On a Class of Geometry-Driven Free Boundary Problems

نویسنده

  • Darren Crowdy
چکیده

An abstract class of two-dimensional geometry-driven free boundary problems is considered in which the evolution of the Cauchy transform of the time-evolving domain satisfies a partial differential equation of conservation type. This idea generalizes an association between free boundary problems and the inverse gravitational problem. It is shown that this class of free boundary problems admits exact solutions expressible in terms of a finite set of time-evolving parameters. In addition, even when exact solutions are not available, a theorem is established which shows that solutions corresponding to certain initial conditions possess nontrivial conserved quantities. Two distinct problems of physical interest are shown to fall within this abstract class: the evolution of a fluid blob in a rotating Hele–Shaw cell and the evolution of highly viscous fluid under the effects of surface tension. Various aspects of these two problems are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS

This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.

متن کامل

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

متن کامل

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

Axial and Torsional Free Vibrations of Elastic Nano-Beams by Stress-Driven Two-Phase Elasticity

Size-dependent longitudinal and torsional vibrations of nano-beams are examined by two-phase mixture integral elasticity. A new and efficient elastodynamic model is conceived by convexly combining the local phase with strain- and stress-driven purely nonlocal phases. The proposed stress-driven nonlocal integral mixture leads to well-posed structural problems for any value of the scale parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2002